您好、欢迎来到现金彩票网!
当前位置:秒速牛牛 > 通信模型 >

ISOOSI参考模型与TCPIP模型的异同点

发布时间:2019-07-09 20:43 来源:未知 编辑:admin

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  1. 在分层上进行比较:OSI分七层,而TCP/IP分四层,它们都有网络层(或称互联网层)、传输层和应用层,但其他的层并不相同

  2.在通信上进行比较:OSI模型的网络层同时支持无连接和面向连接的通信,但是传输层上只支持面向连接的通信;TCP/IP模型的网络层只提供无连接的服务,但在传输层上同时支持两种通信模式。

  3.OSI/RM体系结构的网络功能在各层的分配差异大,链路层和网络层过于繁重,表示层和会话层又太轻,TCP/IP则相对比较简单。

  4.OSI-RM有关协议和服务定义太复杂且冗余,很难且没有必要在一个网络中全部实现。如流量控制、差错控制、寻址在很多层重复。TCP/IP则没什么重复。

  5.OSI的七层协议结构既复杂又不实用,但其概念清楚,体系结构理论较完整。TCP/IP的协议现在得到了广泛的应用,但它原先并没有一个明确的体系结构

  通过对两种体系结构的学习,OSI/RM是先有协议才有网络体系结构来帮助人们理解的。我认为OSI/RM体系是一种比较完善的体系结构,它分为七个层次,每个层次之间的关系比较密切,但又过于密切,存在一些重复,我认为分层最重要的是不能有太多重复,否则就起不到分层的作用了。它是一种过于理想化的体系结构,在实际的实施过程中有比较大的难度。但它却很好的为我们担供了一个体系分层的参考。有着很好的指导作用。

  TCP/IP体系结构分为四层,层次相对要简单得多,因此在实际的使用中比OSI/RM更具有实用性,所以它得到了更好的发展。现在的计算机网络大多是TCP/IP体系结构。但这并不表示它就是完整的结构体系。它也同样存在一些问题。也许随着网络的发展,它发展得更加完美。

  OSI/RM是国际标准,但是并没有进行大规模的应用,而TCP/IP协议最终占领了几乎整个网络世界,这很形象的说明能够占领市场的才是最终的标准,这方面的例子在计算机领域太多了,如操作系统方面等。通过这个例子我们可以发现那些关系着整个世界的标准,常常会受到多方面因素的制约,如技术、利益等。当然最重要的是要简单,要易于实现,成本要低,要能够占领市场

  OSI 参考模型与TCP/ IP 参考模型都是用来解决不同计算机之间数据传输的问题。这两种模型都

  是基于独立的协议栈的概念,都采用分层的方法,每层都建立在它的下一层之上,并为它的上一层提供

  例如:在两种参考模型中,传输层及其以下的各层都为需要通信的进程提供端到端、与网络无关的

  传输服务,这些层成了传输服务的提供者;同样,在传输层以上的各层都是传输服务的用户。

  (1) OSI 参考模型的协议比TCP/ IP 参考模型的协议更具有面向对象的特性。

  OSI 参考模型明确了三个主要概念:服务、接口和协议。这些思想和现代的面向对象的编程技术非

  常吻合。一个对象有一组方法,该对象外部的进程可以使用它们,这些方法的语义定义该对象提供的服

  务,方法的参数和结果就是对象的接口,对象内部的代码实现它的协议。当然,这些代码在该对象外部

  是不可见的。而TCP/ IP 参考模型最初没有明确区分服务、接口和协议,人们也试图改进它,使其更加

  从上述的比较分析可以看出,OSI 参考模型中的协议比TCP/ IP 参考模型中的协议具有更好的面

  向对象的特性,在技术发生变化时,由于它的封装性和隐藏性,能够比较容易地进行替换和更新。而

  TCP/ IP 参考模型由于没有明确区分服务、接口和协议的概念,对于使用新技术设计新网络来说,这种

  参考模型就会遇到许多不利的因素。另外,TCP/ IP 参考模型完全不是通用的,不适合描述该模型以外

  TCP/ IP 首先考虑的是多种异构网的互连问题,并将网际协议IP 作为TCP/ IP 的重要组成部分。

  但ISO 和CCITT(国际电报电话咨询委员会) 最初只考虑到使用一种标准的公用数据网将各种不同的

  系统互连在一起。后来, ISO 认识到了网际协议IP 的重要性,但为时已晚,只好在网络层中划分出一个

  (3) TCP/ IP 参考模型比OSI 参考模型更注重面向无连接的服务。

  TCP/ IP 一开始就对面向连接服务和无连接服务并重,而OSI 在开始时只强调面向连接服务。经

  过相当长的一段时间,OSI 才开始制定无连接服务的有关标准。例如:OSI 参考模型在传输层仅支持面

  向连接的通信方式,而TCP/ IP 参考模型在该层支持面向连接和无连接两种通信方式,提供给用户选择

  参考资料:《OSI参考模型与TCPIP参考模型的比较》 罗道昆,于浩杰

  谈到网络不能不谈OSI参考模型,虽然OSI参考模型的实际应用意义不是很大,但其的确对于理解网络协议内部的运作很有帮助,也为我们学习网络协议提供了一个很好的参考。在现实网络世界里,TCP/IP协议栈获得了更为广泛的应用。

  在这个OSI七层模型中,每一层都为其上一层提供服务、并为其上一层提供一个访问接口或界面。

  不同主机之间的相同层次称为对等层。如主机A中的表示层和主机B中的表示层互为对等层、主机A中的会话层和主机B中的会话层互为对等层等。

  对等层之间互相通信需要遵守一定的规则,如通信的内容、通信的方式,我们将其称为协议(Protocol)。

  我们将某个主机上运行的某种协议的集合称为协议栈。主机正是利用这个协议栈来接收和发送数据的。

  OSI参考模型通过将协议栈划分为不同的层次,可以简化问题的分析、处理过程以及网络系统设计的复杂性。

  OSI参考模型的提出是为了解决不同厂商、不同结构的网络产品之间互连时遇到的不兼容性问题。但是该模型的复杂性阻碍了其在计算机网络领域的实际应用。与此对照,后面我们将要学习的TCP/IP参考模型,获得了非常广泛的应用。实际上,也是目前因特网范围内运行的唯一一种协议。

  物理层规定了激活、维持、关闭通信端点之间的机械特性、电气特性、功能特性以及过程特性。该层为上层协议提供了一个传输数据的物理媒体。

  数据链路层在不可靠的物理介质上提供可靠的传输。该层的作用包括:物理地址寻址、数据的成帧、流量控制、数据的检错、重发等。

  数据链路层协议的代表包括:SDLC、HDLC、PPP、STP、帧中继等。

  网络层负责对子网间的数据包进行路由选择。此外,网络层还可以实现拥塞控制、网际互连等功能。

  传输层是第一个端到端,即主机到主机的层次。传输层负责将上层数据分段并提供端到端的、可靠的或不可靠的传输。此外,传输层还要处理端到端的差错控制和流量控制问题。

  会话层管理主机之间的会话进程,即负责建立、管理、终止进程之间的会话。会话层还利用在数据中插入校验点来实现数据的同步。

  会话层协议的代表包括:NetBIOS、ZIP(AppleTalk区域信息协议)等。

  表示层对上层数据或信息进行变换以保证一个主机应用层信息可以被另一个主机的应用程序理解。表示层的数据转换包括数据的加密、压缩、格式转换等。

  如图1-2所示,在OSI参考模型中,当一台主机需要传送用户的数据(DATA)时,数据首先通过应用层的接口进入应用层。在应用层,用户的数据被加上应用层的报头(Application Header,AH),形成应用层协议数据单元(Protocol Data Unit,PDU),然后被递交到下一层-表示层。

  表示层并不关心上层-应用层的数据格式而是把整个应用层递交的数据包看成是一个整体进行封装,即加上表示层的报头(Presentation Header,PH)。然后,递交到下层-会话层。

  同样,会话层、传输层、网络层、数据链路层也都要分别给上层递交下来的数据加上自己的报头。它们是:会话层报头(Session Header,SH)、传输层报头(Transport Header,TH)、网络层报头(Network Header,NH)和数据链路层报头(Data link Header,DH)。其中,数据链路层还要给网络层递交的数据加上数据链路层报尾(Data link Termination,DT)形成最终的一帧数据。

  当一帧数据通过物理层传送到目标主机的物理层时,该主机的物理层把它递交到上层-数据链路层。数据链路层负责去掉数据帧的帧头部DH和尾部DT(同时还进行数据校验)。如果数据没有出错,则递交到上层-网络层。

  同样,网络层、传输层、会话层、表示层、应用层也要做类似的工作。最终,原始数据被递交到目标主机的具体应用程序中。

  ISO制定的OSI参考模型的过于庞大、复杂招致了许多批评。与此对照,由技术人员自己开发的TCP/IP协议栈获得了更为广泛的应用。如图2-1所示,是TCP/IP参考模型和OSI参考模型的对比示意图。

  TCP/IP协议栈是美国国防部高级研究计划局计算机网(Advanced Research Projects Agency Network,ARPANET)和其后继因特网使用的参考模型。ARPANET是由美国国防部(U.S.Department of Defense,DoD)赞助的研究网络。最初,它只连接了美国境内的四所大学。随后的几年中,它通过租用的电话线连接了数百所大学和政府部门。最终ARPANET发展成为全球规模最大的互连网络-因特网。最初的ARPANET于1990年永久性地关闭。

  TCP/IP参考模型分为四个层次:应用层、传输层、网络互连层和主机到网络层。如图2-2所示。

  在TCP/IP参考模型中,去掉了OSI参考模型中的会话层和表示层(这两层的功能被合并到应用层实现)。同时将OSI参考模型中的数据链路层和物理层合并为主机到网络层。下面,分别介绍各层的主要功能。

  实际上TCP/IP参考模型没有真正描述这一层的实现,只是要求能够提供给其上层-网络互连层一个访问接口,以便在其上传递IP分组。由于这一层次未被定义,所以其具体的实现方法将随着网络类型的不同而不同。

  网络互连层是整个TCP/IP协议栈的核心。它的功能是把分组发往目标网络或主机。同时,为了尽快地发送分组,可能需要沿不同的路径同时进行分组传递。因此,分组到达的顺序和发送的顺序可能不同,这就需要上层必须对分组进行排序。

  网络互连层定义了分组格式和协议,即IP协议(Internet Protocol)。

  网络互连层除了需要完成路由的功能外,也可以完成将不同类型的网络(异构网)互连的任务。除此之外,网络互连层还需要完成拥塞控制的功能。

  在TCP/IP模型中,传输层的功能是使源端主机和目标端主机上的对等实体可以进行会话。在传输层定义了两种服务质量不同的协议。即:传输控制协议TCP(transmission control protocol)和用户数据报协议UDP(user datagram protocol)。

  TCP协议是一个面向连接的、可靠的协议。它将一台主机发出的字节流无差错地发往互联网上的其他主机。在发送端,它负责把上层传送下来的字节流分成报文段并传递给下层。在接收端,它负责把收到的报文进行重组后递交给上层。TCP协议还要处理端到端的流量控制,以避免缓慢接收的接收方没有足够的缓冲区接收发送方发送的大量数据。

  UDP协议是一个不可靠的、无连接协议,主要适用于不需要对报文进行排序和流量控制的场合。

  TCP/IP模型将OSI参考模型中的会话层和表示层的功能合并到应用层实现。

  应用层面向不同的网络应用引入了不同的应用层协议。其中,有基于TCP协议的,如文件传输协议(File Transfer Protocol,FTP)、虚拟终端协议(TELNET)、超文本链接协议(Hyper Text Transfer Protocol,HTTP),也有基于UDP协议的。

  IP协议是TCP/IP协议族中最为核心的协议。它提供不可靠、无连接的服务,也即依赖其他层的协议进行差错控制。在局域网环境,IP协议往往被封装在以太网帧(见本章1.3节)中传送。而所有的TCP、UDP、ICMP、IGMP数据都被封装在IP数据报中传送。如图2-3所示:

  ●版本(Version)字段:占4比特。用来表明IP协议实现的版本号,当前一般为IPv4,即0100。

  ●报头长度(Internet Header Length,IHL)字段:占4比特。是头部占32比特的数字,包括可选项。普通IP数据报(没有任何选项),该字段的值是5,即160比特=20字节。此字段最大值为60字节。

  ●服务类型(Type of Service ,TOS)字段:占8比特。其中前3比特为优先权子字段(Precedence,现已被忽略)。第8比特保留未用。第4至第7比特分别代表延迟、吞吐量、可靠性和花费。当它们取值为1时分别代表要求最小时延、最大吞吐量、最高可靠性和最小费用。这4比特的服务类型中只能置其中1比特为1。可以全为0,若全为0则表示一般服务。服务类型字段声明了数据报被网络系统传输时可以被怎样处理。例如:TELNET协议可能要求有最小的延迟,FTP协议(数据)可能要求有最大吞吐量,SNMP协议可能要求有最高可靠性,NNTP(Network News Transfer Protocol,网络新闻传输协议)可能要求最小费用,而ICMP协议可能无特殊要求(4比特全为0)。实际上,大部分主机会忽略这个字段,但一些动态路由协议如OSPF(Open Shortest Path First Protocol)、IS-IS(Intermediate System to Intermediate System Protocol)可以根据这些字段的值进行路由决策。

  ●总长度字段:占16比特。指明整个数据报的长度(以字节为单位)。最大长度为65535字节。

  ●标志字段:占16比特。用来唯一地标识主机发送的每一份数据报。通常每发一份报文,它的值会加1。

  ●段偏移字段:占13比特。如果一份数据报要求分段的话,此字段指明该段偏移距原始数据报开始的位置。

  ●生存期(TTL:Time to Live)字段:占8比特。用来设置数据报最多可以经过的路由器数。由发送数据的源主机设置,通常为32、64、128等。每经过一个路由器,其值减1,直到0时该数据报被丢弃。

  ●协议字段:占8比特。指明IP层所封装的上层协议类型,如ICMP(1)、IGMP(2) 、TCP(6)、UDP(17)等。

  ●头部校验和字段:占16比特。内容是根据IP头部计算得到的校验和码。计算方法是:对头部中每个16比特进行二进制反码求和。(和ICMP、IGMP、TCP、UDP不同,IP不对头部后的数据进行校验)。

  ●源IP地址、目标IP地址字段:各占32比特。用来标明发送IP数据报文的源主机地址和接收IP报文的目标主机地址。

  可选项字段:占32比特。用来定义一些任选项:如记录路径、时间戳等。这些选项很少被使用,同时并不是所有主机和路由器都支持这些选项。可选项字段的长度必须是32比特的整数倍,如果不足,必须填充0以达到此长度要求。

  TCP是一种可靠的、面向连接的字节流服务。源主机在传送数据前需要先和目标主机建立连接。然后,在此连接上,被编号的数据段按序收发。同时,要求对每个数据段进行确认,保证了可靠性。如果在指定的时间内没有收到目标主机对所发数据段的确认,源主机将再次发送该数据段。

  ●源、目标端口号字段:占16比特。TCP协议通过使用端口来标识源端和目标端的应用进程。端口号可以使用0到65535之间的任何数字。在收到服务请求时,操作系统动态地为客户端的应用程序分配端口号。在服务器端,每种服务在众所周知的端口(Well-Know Port)为用户提供服务。

  ●顺序号字段:占32比特。用来标识从TCP源端向TCP目标端发送的数据字节流,它表示在这个报文段中的第一个数据字节。

  ●确认号字段:占32比特。只有ACK标志为1时,确认号字段才有效。它包含目标端所期望收到源端的下一个数据字节。

  ●头部长度字段:占4比特。给出头部占32比特的数目。没有任何选项字段的TCP头部长度为20字节;最多可以有60字节的TCP头部。

  ●窗口大小字段:占16比特。此字段用来进行流量控制。单位为字节数,这个值是本机期望一次接收的字节数。

  ●TCP校验和字段:占16比特。对整个TCP报文段,即TCP头部和TCP数据进行校验和计算,并由目标端进行验证。

  ●紧急指针字段:占16比特。它是一个偏移量,和序号字段中的值相加表示紧急数据最后一个字节的序号。

  ●选项字段:占32比特。可能包括窗口扩大因子、时间戳等选项。

  UDP是一种不可靠的、无连接的数据报服务。源主机在传送数据前不需要和目标主机建立连接。数据被冠以源、目标端口号等UDP报头字段后直接发往目的主机。这时,每个数据段的可靠性依靠上层协议来保证。在传送数据较少、较小的情况下,UDP比TCP更加高效。

  ●源、目标端口号字段:占16比特。作用与TCP数据段中的端口号字段相同,用来标识源端和目标端的应用进程。

  ●校验和字段:占16比特。用来对UDP头部和UDP数据进行校验。和TCP不同的是,对UDP来说,此字段是可选项,而TCP数据段中的校验和字段是必须有的。

  在每个TCP、UDP数据段中都包含源端口和目标端口字段。有时,我们把一个IP地址和一个端口号合称为一个套接字(Socket),而一个套接字对(Socket pair)可以唯一地确定互连网络中每个TCP连接的双方(客户IP地址、客户端口号、服务器IP地址、服务器端口号)。

  需要注意的是,不同的应用层协议可能基于不同的传输层协议,如FTP、TELNET、SMTP协议基于可靠的TCP协议。TFTP、SNMP、RIP基于不可靠的UDP协议。

  同时,有些应用层协议占用了两个不同的端口号,如FTP的20、21端口,SNMP的161、162端口。这些应用层协议在不同的端口提供不同的功能。如FTP的21端口用来侦听用户的连接请求,而20端口用来传送用户的文件数据。再如,SNMP的161端口用于SNMP管理进程获取SNMP代理的数据,而162端口用于SNMP代理主动向SNMP管理进程发送数据。

  还有一些协议使用了传输层的不同协议提供的服务。如DNS协议同时使用了TCP 53端口和UDP 53端口。DNS协议在UDP的53端口提供域名解析服务,在TCP的53端口提供DNS区域文件传输服务。

  TCP会话通过三次握手来初始化。三次握手的目标是使数据段的发送和接收同步。同时也向其他主机表明其一次可接收的数据量(窗口大小),并建立逻辑连接。这三次握手的过程可以简述如下:

  ●源主机发送一个同步标志位(SYN)置1的TCP数据段。此段中同时标明初始序号(Initial Sequence Number,ISN)。ISN是一个随时间变化的随机值。

  ●目标主机发回确认数据段,此段中的同步标志位(SYN)同样被置1,且确认标志位(ACK)也置1,同时在确认序号字段表明目标主机期待收到源主机下一个数据段的序号(即表明前一个数据段已收到并且没有错误)。此外,此段中还包含目标主机的段初始序号。

  至此为止,TCP会话的三次握手完成。接下来,源主机和目标主机可以互相收发数据。整个过程可用图2-8表示。

  总结:OSI 参考模型与TCP/ IP 参考模型都是用来解决不同计算机之间数据传输的问题。这两种模型都

  是基于独立的协议栈的概念,都采用分层的方法,每层都建立在它的下一层之上,并为它的上一层提供

  例如:在两种参考模型中,传输层及其以下的各层都为需要通信的进程提供端到端、与网络无关的

  传输服务,这些层成了传输服务的提供者;同样,在传输层以上的各层都是传输服务的用户。

  (1) OSI 参考模型的协议比TCP/ IP 参考模型的协议更具有面向对象的特性。

  OSI 参考模型明确了三个主要概念:服务、接口和协议。这些思想和现代的面向对象的编程技术非

  常吻合。一个对象有一组方法,该对象外部的进程可以使用它们,这些方法的语义定义该对象提供的服

  务,方法的参数和结果就是对象的接口,对象内部的代码实现它的协议。当然,这些代码在该对象外部

  是不可见的。而TCP/ IP 参考模型最初没有明确区分服务、接口和协议,人们也试图改进它,使其更加

  从上述的比较分析可以看出,OSI 参考模型中的协议比TCP/ IP 参考模型中的协议具有更好的面

  向对象的特性,在技术发生变化时,由于它的封装性和隐藏性,能够比较容易地进行替换和更新。而

  TCP/ IP 参考模型由于没有明确区分服务、接口和协议的概念,对于使用新技术设计新网络来说,这种

  参考模型就会遇到许多不利的因素。另外,TCP/ IP 参考模型完全不是通用的,不适合描述该模型以外

  TCP/ IP 首先考虑的是多种异构网的互连问题,并将网际协议IP 作为TCP/ IP 的重要组成部分。

  但ISO 和CCITT(国际电报电话咨询委员会) 最初只考虑到使用一种标准的公用数据网将各种不同的

  系统互连在一起。后来, ISO 认识到了网际协议IP 的重要性,但为时已晚,只好在网络层中划分出一个

  (3) TCP/ IP 参考模型比OSI 参考模型更注重面向无连接的服务。

  TCP/ IP 一开始就对面向连接服务和无连接服务并重,而OSI 在开始时只强调面向连接服务。经

  过相当长的一段时间,OSI 才开始制定无连接服务的有关标准。例如:OSI 参考模型在传输层仅支持面

  向连接的通信方式,而TCP/ IP 参考模型在该层支持面向连接和无连接两种通信方式,提供给用户选择

http://upschool.net/tongxinmoxing/574.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有