您好、欢迎来到现金彩票网!
当前位置:秒速牛牛 > 通信模型 >

一种DNA计算机与电子计算机之间的通信模型

发布时间:2019-05-20 18:15 来源:未知 编辑:admin

  分子作为计算载体的计算方法最早由Adleman博士于1994年在生物实验室实现[1]。随后,实验解决布尔可满足性问题(SAT)的方法。1997年[3],Ouyang等人用分子生物技术解决了最大团问题,并相应地建立了六个节点的DNA分子计算池。2000年[4],Liu等人设计了一个DNA计算系统,将计算问题的所有可能候选解编码成一系列DNA分子,把这些分子综合起来贴在磁珠的表面。2001年[5],Wu分析并改进了前者所采用的基于表面磁珠的方法。这种新颖的计算方式是建立在其高密度信息存储和大量并行计算基础上的,有望在求解NP问题、破解密码、疾病诊断、新材料等领域发挥重要作用代写论文。

  微流控系统为快速化学反应和生物分析提供了基础。微流控系统作为DNA计算的一种平台,已经有了初步的研究成果。2004年[6],Ledesma等人提出了一种用微流控系统解决Hamilton路径问题的线性DNA算法,实现了并行计算。1999年[7],Gehani和Reif研究了用微流生物分子计算模型解决某个问题在理论上所需要的最少DNA序列和最少反应时间,并且提出了反应池之间有效地传送DNA序列的方法。2001年[8],McCaskill采用枚举法用DNA序列对每个可能子图进行编码。该算法使用了所谓的选择模块(STM)来保留图中所有可能团,然后用排序的方法确定了最大团。2001年[9],Chiu等提出了一种新的方法,把子图和图的边分别编译成反应池和缓冲池。这些反应池和缓冲池带有荧光剂,由通道连接,输出以各个子图所发出的荧光强度不同来区分。2004年[10],Livstone和Landweber提出一种微反应器用来解决布尔函数“与”和“或”的问题。

  随着微机电(MEMS)技术的快速发展,在生物芯片上集成各种能与之间相互通信的传感器是各种功能芯片研究的热点[11]。DNA计算的一个严重缺点是操作的不可控,严重影响了DNA计算的实用性。本文在微流控平台上,讨论基于生物芯片的DNA计算机之间相互通信的层次模型,从而为发展DNA计算机和电子计算机相集成的杂合计算机提供一种通信模型和方法。

  2基于电子计算机的DNA计算反应器模型为了使电子计算机能够对DNA计算进行控制,我们研究并设计了适合于DNA计算的反应器。如图1所示,该反应器通过RS232接口与电子计算机连接,人机交互界面的平台是LabVIEW。

  (1)数据流:在电子计算机软件客户端由用户选择某个NP问题,程序开始设计DNA计算机,包括:输入符号、终止符号、〈状态,符号〉、转移分子、扩增所需的引物和DNA编码;酶的选择;扩增、酶切、酶连的动作选择,针对上述酶设计反应温度和阶段。(2)控制流:设计具体问题的程序输入分子和采用的微流控芯片,芯片的通道数量和通道之间的连接以及通道的形状,设计实验实现的详细步骤:每一步的动作、所需的时间、反应的底物、目标产物、代表的中间变量等。图1DNA计算的反应器模型电子计算机主机与89C51系列单片机相连,将数据流和控制流同时送到接口端的高精度全方位机械手:分配试剂,根据反馈的图像信号定位芯片反应平台。生化反应的动态结果反映在应用层,包括当前反应所在的通道、该反应所需的时间、已经消耗的时间、通道的切换、反应产物的解释。DNA计算反应器与电子计算机通信的系统控制模块、光电检测模块、高压电源模块和温度加热模块与电子计算机之间的连接如图2所示。整个反应器能够实现激光诱导荧光检测、芯片电泳和仅与温度有关的生化反应,如PCR、退火、复性等等。

  3DNA计算机与电子计算机之间通信的层次模型DNA计算本质上是以DNA分子及生化酶作为物质基础,施以适当的生化操作来解决数学问题的一种新型的计算模式。由于DNA计算的处理对象是DNA片段,因此运用DNA计算求解数学问题时首先需要将实际问题用{A,T,C,G}四个碱基来编码,原理类似电子计算机求解这些问题时需要用二进制编码。然后需要为求解过程设计合适的生化操作,这个完成运算的生化操作序列我们称之为生物算法。DNA计算是在分子尺度内进行的,完成计算过程的生化操作的不可控一直制约着DNA计算的进一步应用。随着电子计算机技术和传感器技术的发展,二者在DNA计算中的结合可实现对生化操作的精确控制,提高DNA计算的可靠性,为DNA计算进一步走向实用化发挥重要作用。图3给出了电子计算机和DNA计算机之间通信的层次模型。图2DNA计算反应器与电子计算机的通信为了便于描述通信过程,将该模型分为六个部分,每一部分的组成和完成功能描述如下。图3DNA计算机和电子计算机的层次通信模型

  (1)应用层提供用户与DNA计算机之间交互的接口。应用层主要完成两个功能:一是提供用户操纵DNA计算机的界面。在这个界面上用户可以完成原始问题到DNA碱基域的映射以及完成生物算法的设计。通过这个界面,用户可以像使用Office办公软件一样方便地使用DNA计算机。另一个功能是接收指令解释层传送的DNA计算结果,并将结果可视化。指令解释层传送的结果也是用电子计算机语言来描述的。运算结果的可视化可以帮助直观地对这些结果进行合理的解释。应用层由安装在Windows操作系统的电子计算机上的应用程序组成。

  (2)指令解释层由于应用层的指令是用户所熟悉的电子计算机语言描述的,而DNA计算机的基本指令是具体的生物操作,所处理的对象是DNA分子,因此需要将应用层的电子计算机指令解释成DNA计算机上具体的生物操作指令(这些生物操作指令是DNA计算机的最小执行单位基本指令),确定这些生物操作的执行顺序,并依次将这些生物操作指令单个传送给编码封装层。另一方面,还需要将编码封装层反馈的DNA计算结果解释成计算机语言。指令解释层也是由安装在电子计算机内部的代理程序构成。(3)编码封装层将指令解释层传送的单个生物操作指令封装成DNA计算机能直接执行的指令。这里需要考虑每个原子生物操作的实验室实现方法。然后将这个操作的步骤映射成控制传感器和生化仪器的一系列指令,包括对生物芯片上发生该反应的位置信息。编码封装层由操作传感器和生化仪器的接口程序构成。

  (4)接口层接口层是传感器和生化仪器的各种信号接口。一方面,将编码封装层中的控制指令转换成控制DNA计算机执行生化操作的指令;另一方面,也将DNA计算机上的反馈信号转换成电子计算机中的控制指令。接口层之间的通信采用电子计算机的串口通信方式,也可以设计成并口通信方式。(5)反应层DNA计算的生化操作在这一层得以物理实现,以完成解释层下达的任务。此层包含有完成生化反应的生物芯片以及控制这些生化反应的各种传感器和生化仪器。(6)反馈层这一层由监控生化反应的传感器构成。反应层的生化操作的执行情况由这些传感器收集,以便反馈给指令解释层。4通信模型的实例为了更直观地理解本文提出的层次模型,我们以选择操作为例,解释在层次模型下DNA计算机上实现选择操作的过程。

http://upschool.net/tongxinmoxing/57.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有